On Stopping Rules in Dependency-Aware Feature Ranking

نویسندگان

  • Petr Somol
  • Jirí Grim
  • Jirí Filip
  • Pavel Pudil
چکیده

Feature Selection in very-high-dimensional or small sample problems is particularly prone to computational and robustness complications. It is common to resort to feature ranking approaches only or to randomization techniques. A recent novel approach to the randomization idea in form of Dependency-Aware Feature Ranking (DAF) has shown great potential in tackling these problems well. Its original definition, however, leaves several technical questions open. In this paper we address one of these questions: how to define stopping rules of the randomized computation that stands at the core of the DAF method. We define stopping rules that are easier to interpret and show that the number of randomly generated probes does not need to be extensive.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multiobjective Fuzzy Stopping in a Stochastic and Fuzzy Environment

h a stochastic and fuzzy environment, a multiobjective fuzzy stopping problem is discussed. The randomness and fuzziness are evaluated by probabilistic expectations and linear ranking functions, respectively. Pareto optimal fuzzy stopping times are given under the assumption of regularity for stopping rules, by using X-optimal stopping times. @ 2003 Elsevier Ltd. All rights reserved. &Fords-Mul...

متن کامل

Feature Engineering in Persian Dependency Parser

Dependency parser is one of the most important fundamental tools in the natural language processing, which extracts structure of sentences and determines the relations between words based on the dependency grammar. The dependency parser is proper for free order languages, such as Persian. In this paper, data-driven dependency parser has been developed with the help of phrase-structure parser fo...

متن کامل

Stopping Criteria for Ensemble-Based Feature Selection

Selecting the optimal number of features in a classifier ensemble normally requires a validation set or cross-validation techniques. In this paper, feature ranking is combined with Recursive Feature Elimination (RFE), which is an effective technique for eliminating irrelevant features when the feature dimension is large. Stopping criteria are based on out-of-bootstrap (OOB) estimate and class s...

متن کامل

An Introduction to a New Criterion Proposed for Stopping GA Optimization Process of a Laminated Composite Plate

Several traditional stopping criteria in Genetic Algorithms (GAs) are applied to the optimization process of a typical laminated composite plate. The results show that neither of the criteria of the type of statistical parameters, nor those of the kinds of theoretical models performs satisfactorily in determining the interruption point for the GA process. Here, considering the configuration of ...

متن کامل

Sentence Level Machine Translation Evaluation as a Ranking Problem: one step aside from BLEU

The paper proposes formulating MT evaluation as a ranking problem, as is often done in the practice of assessment by human. Under the ranking scenario, the study also investigates the relative utility of several features. The results show greater correlation with human assessment at the sentence level, even when using an n-gram match score as a baseline feature. The feature contributing the mos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013